Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
China Pharmacy ; (12): 186-191, 2024.
Article in Chinese | WPRIM | ID: wpr-1006176

ABSTRACT

OBJECTIVE To investigate the inhibitory effects of Ginkgo biloba extract (GBE) on renal inflammation in diabetic nephropathy (DN) model mice, and its potential mechanism. METHODS KK/Ay mice were fed with high fat and high sugar to induce DN model. They were divided into model group, positive control group [metformin 200 mg/(kg·d)], GBE low-dose and high-dose groups [100, 200 mg/(kg·d)], with 6 mice in each group. Six C57BL/6J mice were fed with a regular diet as the control group. Administration groups were given relevant liquid intragastrically, control group and model group were given constant volume of normal saline intragastrically, once a day, for 8 consecutive weeks. The body weight, fasting blood glucose, 24-hour food intake, 24-hour urine output, monocyte chemoattractant protein-1 (MCP-1), interleukin-12 (IL-12), IL-10, advanced glycation end products (AGEs), blood urea nitrogen (BUN) and serum creatinine (Scr) of mice were measured, and the ratio of bilateral kidneys to body weight was also calculated. The pathological injury and fibrotic changes of the renal cortex were observed, and the expressions of macrophage polarization marker proteins [type M1: inducible nitric oxide synthase (iNOS); type M2: arginase-1 (Arg-1)] and AGEs-the receptor of advanced glycation end products (RAGE)/Ras homolog gene pharm_chenjing@163.com family member A (RhoA)/Rho-associated coiled-coil forming protein kinase (ROCK) signaling pathway-related proteins were determined in renal cortex. RESULTS Compared with the model group, the symptoms such as renal cortical hyperplasia, vacuoles, infiltration of inflammatory cells, and renal cortical fibrosis had been improved in GBE low-dose and high-dose groups; body weight, serum level of IL-10, the expression of Arg-1 in the renal cortex were significantly higher than model group (P< 0.01); fasting blood glucose, 24-hour food intake, 24-hour urine output, serum levels of MCP-1, IL-12, BUN, Scr and AGEs, the ratio of bilateral kidneys to body weight, renal injury score, the proportion of renal interstitial fibrosis, the protein expressions of iNOS, RAGE, RhoA and ROCK1 (except for GBE low-dose group) in renal cortex were significantly lower than model group (P<0.01). CONCLUSIONS GBE could improve kidney damage and alleviate inflammatory response in DN model mice, the mechanism of which may be related to inhibiting the AGEs-RAGE/RhoA/ROCK signaling pathway and regulating macrophage polarization.

2.
Acta Pharmaceutica Sinica ; (12): 214-224, 2024.
Article in Chinese | WPRIM | ID: wpr-1005436

ABSTRACT

Based on UPLC-Q-orbitrap-MS and biological network analysis tools, the mechanism of Xihuang Pill in improving hyperplasia of mammary glands was systematically analyzed. The rat model of hyperplasia of mammary glands was established by intramuscular injection of estradiol benzoate and progesterone. LC-MS tissue metabolomics was used to explore the key metabolites and metabolic pathways of Xihuang Pill in improving hyperplasia of mammary glands in rat. The network analysis of the key metabolites regulated by Xihuang Pill was carried out by integrating biological network analysis tools, focusing on the key metabolic pathways, and exploring the potential targets of Xihuang Pill to improve hyperplasia of mammary glands. Compared with the control group, there were significant differences in the content of 49 differential metabolites in the tissues of the model group (P < 0.05). Xihuang Pills could significantly call back 17 metabolites such as L-alanine, threonine, indole-3-carboxylic aldehyde, lysine, arginine, alanylleucine, glycyltyrosine, γ-glutamyl leucine, vitamin B3, serine leucine, threonine leucine, isoleucine glutamic acid, γ-glutamyl tyrosine, decanoyl-L-carnitine, uric acid, leucylleucine, S-adenosyl-methionine. Further network analysis and literature research on the key metabolites regulated by Xihuang Pills showed that the AGE-RAGE signaling pathway may be one of the important pathways for Xihuang Pills to improve hyperplasia of mammary glands. STAT3, MAPK1, EGFR, CASP3, CASP8, PRKCA and JUN in the AGE-RAGE signaling pathway may be potential targets for Xihuang Pills to improve hyperplasia of mammary glands. The animal experiment operations involved in this paper follow the provisions of the Animal Ethics Committee of Gansu University of Traditional Chinese Medicine and pass the ethical review of animal experiments (approval number: 2022-705).

3.
China Pharmacy ; (12): 57-62, 2024.
Article in Chinese | WPRIM | ID: wpr-1005214

ABSTRACT

OBJECTIVE To study the improvement effects of poria acid on insulin resistance in rats with polycystic ovary syndrome (PCOS) and its mechanism. METHODS One hundred and twenty-six female rats were randomly separated into blank group, PCOS group, poria acid low-dose group (8.33 mg/kg), pachymic acid high-dose group (33.32 mg/kg), ethinylestradiol cyproterone group (positive control group, 0.34 mg/kg), recombinant rat high mobility group protein B1 protein (rHMGB1) group (8 μg/kg), and poria acid high dose+rHMGB1 group (33.32 mg/kg poria acid+8 μg/kg rHMGB1), with 18 rats in each group. Except for the blank group, the rats in all other groups were given Letrozole suspension intragastrically to construct the PCOS model. After successful modeling, administration was performed once a day for 4 weeks. After medication, the fasting blood glucose and fasting insulin levels, and insulin resistance index (HOMA-IR) were measured in rats; the levels of follicle-stimulating hormone (FSH), luteinizing hormone (LH) and testosterone (T) in rat serum, and the levels of interleukin-1β (IL-1β) and tumor necrosis factor- α (TNF- α) in ovarian tissue were detected; ovarian coefficients of rats were calculated; the pathological changes of ovarian tissue were observed; the expressions of HMGB1, receptor for advanced glycosylation elaine_ tanghong@sina.com end product (RAGE) and phosphorylated nuclear factor κB p65 (p-NF-κB p65) proteins were determined in ovarian tissue of rats. RESULTS Compared with the blank group, the pathological injury of ovarian tissue of rats in the PCOS group was serious, the levels of fasting blood glucose and fasting insulin, HOMA-IR and ovarian coefficient were increased, the levels of serum LH and T were increased, while the levels of FSH were decreased; the levels of IL-1β and TNF-α, the expressions of HMGB1, RAGE and p-NF-κB p65 protein in ovarian tissue were increased, with statistical significance (P<0.05). Compared with the PCOS group, pathological damage of ovarian tissue was reduced in poria acid low-dose and high-dose groups and ethinylestradiol cyproterone group, and fasting blood glucose, fasting insulin levels, HOMA-IR and ovarian coefficient were decreased; serum LH and T levels were decreased, while FSH levels were increased; the levels of IL-1β and TNF-α and the expressions of HMGB1, RAGE and p-NF-κB p65 protein in ovarian tissue were decreased, with statistical significance (P<0.05). The trend of corresponding indexes in rHMGB1 group was opposite to the above (P<0.05). Compared with poria acid high-dose group, the changes of the above indexes were reversed significantly in poria acid high-dose+rHMGB1 group (P<0.05). CONCLUSIONS Poria acid may improve insulin resistance and inhibit inflammatory reaction in PCOS rats by inhibiting HMGB1/ RAGE pathway.

4.
China Pharmacy ; (12): 51-56, 2024.
Article in Chinese | WPRIM | ID: wpr-1005213

ABSTRACT

OBJECTIVE To investigate the improvement effects of limonin on intestinal injury and intestinal flora disturbance in rats with ulcerative colitis (UC) and its mechanism. METHODS UC rat models were established, and 70 rats with successful modeling were randomly divided into model group, limonin low-, medium-, and high-dose groups (12.5, 25, 50 mg/kg), and sulfasalazine group (positive control group,500 mg/kg), with 14 rats in each group. Another 14 rats were selected as the control group. After modeling, each group was given the corresponding drug or equal amount of normal saline, once a day, for 2 weeks. Twenty-four hours after the last administration, the general condition of rats was observed and the body weight was measured, and colon tissue was collected for colonic mucosal damage index (CMDI) scoring; the levels of interleukin-1β (IL-1β), IL-6 and tumor necrosis factor-α (TNF-α) in colon tissue were detected; the pathological changes of colon tissue were observed; the protein expressions of Claudin-1, Occludin, ZO-1, high mobility group protein B1 (HMGB1) and receptor for advanced glycation end products (RAGE) in colon tissue were detected; fecal 16S rRNA sequencing was used to detect the relative abundance of zhangxiaxia5287@163.com intestinal microbiota in rats. RESULTS Compared with the control group, the rats in the model group were in poor mental state, with darker fur, irritable mood, disordered arrangement of colon glands, inflammatory cell infiltration, cell necrosis and edema; CMDI score, the levels of IL-1β, IL-6 and TNF-α, protein expressions of HMGB1 and RAGE in colon tissue, the relative abundance of Proteobacteria and Bacteroidetes were significantly increased (P<0.05); body weight, the protein expressions of Claudin-1, Occludin and ZO-1 in colon tissue, the relative abundance of Firmicutes in the intestine were significantly decreased (P<0.05). Compared with the model group, general situation and pathological damage of colonic tissue in limonin groups were improved, the levels of the above indicators were significantly reversed (P<0.05), and in a dose-dependent manner (P<0.05); there was no significant difference in various indexes between sulfasalazine group and limonin high-dose group (P>0.05). CONCLUSIONS Limonin can improve intestinal injury and intestinal flora disturbance in UC model rats, the mechanism of which may be associated with the down-regulation of HMGB1/RAGE signaling pathway.

5.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 1-8, 2023.
Article in Chinese | WPRIM | ID: wpr-984577

ABSTRACT

ObjectiveTo explore the mechanism of Dahuang Mudantang in alleviating the intestinal injury in the rat model of acute pancreatitis via the high-mobility group box 1 (HMGB1)/receptor for advanced glycation endproduct (RAGE)/nuclear factor-κB (NF-κB) signaling pathway. MethodOne hundred and twenty SPF-grade Wistar rats received retrograde injection of 5% sodium taurocholate into the biliopancreatic duct for the modeling of intestinal injury in acute pancreatitis. The rats were randomized into blank, model, low-, medium-, and high-dose (3.5, 7, 14 g·kg-1, administrated by gavage) Dahuang Mudantang, and octreotide (1×10-5 g·kg-1, subcutaneous injection) groups (n=20). The rats in blank and model groups received equal volume of distilled water by gavage. Drugs were administered 1 h before and every 12 h after modeling, and samples were collected 24 h after modeling. The general status of the rats was observed. The biochemical methods were employed to measure the levels of amylase (AMS) and C-reactive protein (CRP) in the serum. The enzyme-linked immunosorbent assay (ELISA) was employed to measure the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 in the colon tissue. The morphological changes of pancreatic and colon tissues were observed by hematoxylin-eosin (HE) staining. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were employed to measure the expression levels of HMGB1, RAGE, inhibitor of NF-κB kinase (IKK), and NF-κB suppressor protein α(IκBα)in the colon tissue. ResultThe rats in the model group showed poor general survival, writhing response, reduced frequency of defecation, and dry stool. The symptoms of rats in the model group were mitigated in each treatment group, and the high-dose Dahuang Mudantang showed the most significant effect. Compared with the normal group, the model group had elevated AMS and CRP levels (P<0.05), which were lowered by Dahuang Mudantang (P<0.05), especially that at the high dose (P<0.05). Compared with the normal group, the modeling elevated that levels of TNF-α, IL-1β, and IL-6 (P<0.05). Such elevations were lowered by Dahuang Mudantang (P<0.05), and the high-dose group and the octreotide group showed better performance (P<0.05). The modeling caused necrotic, congested, and destructed pancreatic and colonic tissues, which were ameliorated by the drugs, especially high-dose Dahuang Mudantang. Compared with the normal group, the modeling up-regulated the mRNA levels of HMGB1, RAGE, IKK, IκBα, and NF-κB (P<0.05). Compared with the model group, Dahuang Mudantang and octreotide down-regulated the mRNA levels of HMGB1, RAGE, IKK, IκBα, and NF-κB (P<0.05), and the high-dose Dahuang Mudantang demonstrated the best performance (P<0.05). Western blot results showed a trend consistent with the results of Real-time PCR. ConclusionDahuang Mudantang can improved the general status, reduce inflammation, and alleviate histopathological changes in the pancreatic and colon tissues in the rat model of acute pancreatitis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.

6.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 54-64, 2023.
Article in Chinese | WPRIM | ID: wpr-973745

ABSTRACT

ObjectiveTo determine the mechanism of Yitangkang in correcting excessive apoptosis of skeletal muscle cells to improve insulin resistance (IR) by inhibiting the advanced glycation end product (AGE)/receptor for the advanced glycation end product (RAGE) signaling pathway. Method① In vitro experiments. Yitangkang-medicated serum was prepared. C2C12 cells were divided into a blank group, a model group, high-, medium-, and low-dose Yitangkang-medicated serum groups (40, 20, and 10 g·kg-1), and a RAGE inhibitor group. The IR model was induced by palmitic acid in C2C12 cells except for those in the blank group. After the corresponding intervention methods were conducted,the cell viability and glucose consumption level of each group were determined. In addition,the apoptosis rate was determined using flow cytometry. The mRNA and protein expression levels of the important apoptotic proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), p53, cysteinyl aspartate-specific protease-3 (Caspase-3), and cysteinyl aspartate-specific protease-9 (Caspase-9)] were determined using Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot. ② In vivo experiments. Ninety-six eligible Wistar rats were divided into a blank group, a model group, high-,medium-,and low-dose Yitangkang groups (40, 20, and 10 g·kg-1), and a western medicine group (pioglitazone hydrochloride,1.35 mg·kg-1). The IR model was induced using high-glucose and high-fat feed for diabetes combined with intraperitoneal injection of low-dose streptozotocin (STZ) in animals and verified by the hyperinsulinemic-euglycemic clamp (HEC) test. After the model was determined successfully, the rats in each group were given intragastric administration of drugs as required. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed to determine the number of positive apoptotic cells in the skeletal muscle tissues of rats in each group,while Real-time polymerase chain reaction(Real-time PCR) and Western blot were performed to determine the mRNA and protein expression levels of the important apoptotic proteins Bcl-2, Bax, p53, Caspase-3, and Caspase-9. Result① In vitro experiments. compared with the blank group, the model groups showed increased apoptosis rate of C2C12 cells and decreased cell viability and glucose consumption (P<0.01). Compared with the model group, the Yitangkang-medicated serum groups and the RAGE inhibitor group showed decreased apoptosis rate of C2C12 cells and increased cell viability and glucose consumption (P<0.01). Compared with the blank group, the model group showed decreased expression levels of Bcl-2 mRNA and protein in C2C12 cells and increased mRNA and protein expression levels of Bax, p53, Caspase-3, and Caspase-9 (P<0.01). Compared with the model group, the Yitangkang-medicated serum groups and the RAGE inhibitor group showed increased expression levels of Bcl-2 mRNA and protein in C2C12 cells (P<0.01) and decreased mRNA and protein expression levels of Bax, p53, Caspase-3, and Caspase-9 (P<0.05, P<0.01). ② In vivo experiments. The number of positive apoptotic cells in the skeletal muscle tissues of rats in the model group significantly increased as compared with that in the blank group (P<0.01). The number of positive apoptotic cells in the skeletal muscle tissues of rats in the Yitangkang groups and the western medicine group decreased as compared with that in the model group (P<0.01). Compared with the blank group, the model group showed decreased expression levels of Bcl-2 mRNA and protein in skeletal muscle tissues of rats and increased mRNA and protein expression levels of Bax, p53, Caspase-3, and Caspase-9 (P<0.01). Compared with the model group, the Yitangkang groups and the western medicine group showed increased expression levels of Bcl-2 mRNA and protein in skeletal muscle tissues of rats (P<0.01) and decreased mRNA and protein expression levels of Bax, p53, Caspase-3, and Caspase-9 (P<0.05, P<0.01). The medium-dose Yitangkang showed a similar effect as RAGE inhibitor, and the effect was equivalent to that of pioglitazone hydrochloride. ConclusionYitangkang can inhibit skeletal muscle cell apoptosis by inhibiting the AGE/RAGE signaling pathway.

7.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 44-54, 2023.
Article in Chinese | WPRIM | ID: wpr-961682

ABSTRACT

ObjectiveTo study the effect of modified Erchentang on the expression of key molecules in the high mobility group Box 1 protein (HMGB1)/receptor for advanced glycation endproduct (RAGE)/nuclear factor-κB (NF-κB) signaling pathway in bronchioles of rats with chronic obstructive pulmonary disease (COPD), to explore the mechanism of modified Erchentang against bronchiolar inflammation of COPD rats via HMGB1/RAGE/NF-κB signaling pathway. MethodSixty SD rats were randomly divided into normal group, model group, modified Erchentang low-, medium- and high-dose groups (5, 10, 20 g·kg-1·d-1) and ethyl pyruvate (HMGB1 inhibitor) group, with 10 in each group. The COPD rat model was prepared by cigarette smoke combined with tracheal injection of lipopolysaccharide (LPS). After modeling, the modified Erchentang groups were given corresponding drugs (ig) and Ringer's solution (4 mL, ip), while the EP group was treated with equal volume of normal saline (ig) and EP (0.04 g·kg-1·d-1, ip). The normal group and the model group received equal volume of normal saline (ig) and Ringer's solution (ip) for 21 consecutive days. The contents of HMGB1, chemokine (C-X-C motif) ligand 1 (CXCL1), CXCL2 and monocyte chemotactic protein-1 (MCP-1) in bronchoalveolar lavage fluid (BALF) were detected by enzyme-linked immunosorbent assay (ELISA). The mRNA expressions of HMGB1, RAGE and NF-κB p65 were determined by Real-time polymerase chain reaction (Real-time PCR), and the protein expressions of HMGB1, RAGE, p-NF-κB p65, and alpha-smooth muscle actin (α-SMA) in bronchioles tissue of rats were determined by immunohistochemistry (IHC). ResultCompared with the conditions in the normal group, the forced vital capacity (FVC), forced expiratory volume in the first second (FEV1) and FEV1/FVC in the model group were decreased (P<0.01) while the contents of HMGB1, CXCL1, CXCL2 and MCP-1 in BALF were increased (P<0.01). And the model group presented higher mRNA expressions of HMGB1, RAGE and NF-κB p65 (P<0.01) and protein expressions of HMGB1, RAGE, p-NF-κB p65 and α-SMA (P<0.05, P<0.01) than the normal group. Compared with the model group, the modified Erchentang medium- and high-dose groups had increased FEV1/FVC (P<0.05, P<0.01), lowered contents of HMGB1, CXCL1, CXCL2 and MCP-1 in BALF (P<0.05, P<0.05), and reduced mRNA expressions of HMGB1, RAGE and NF-κB p65 (P<0.05, P<0.01) and protein expressions of HMGB1, RAGE, p-NF-κB p65 and α-SMA (P<0.05, P<0.01). ConclusionModified Erchentang can resist bronchiolar inflammation of COPD rats. The mechanism may be related to down-regulating the mRNA expressiona of HMGB1 and RAGE, inhibiting the activity of NF-κB, and reducing the release of HMGB1, CXCL1, CXCL2 and MCP-1, thus suppressing the inflammatory injury and abnormal repair of bronchioles.

8.
Journal of Xi'an Jiaotong University(Medical Sciences) ; (6): 221-228, 2023.
Article in Chinese | WPRIM | ID: wpr-1005748

ABSTRACT

【Objective】 To observe the reactive change of cortical perivascular cells after craniocerebral injury and explore its mechanism. 【Methods】 The controllable cortical impact animal model was used to simulate craniocerebral injury, the expressions of cortical pericyte markers at different time points after trauma were studied by Western blotting, and the biological behavior of vascular pericytes after craniocerebral injury was determined by transmission electron microscopy. Post-traumatic high mobility group box 1 (HMGB1), receptor for advanced glycation end product (RAGE), and nuclear factor κB (NF-κB) were detected by Western blotting. The experimental animals were divided into FPS-ZM1 (a specific RAGE receptor blocker) injection group and wild-type group. Wet and dry brain weight and transmission electron microscopy were used to study the post-traumatic effects of HMGB1-RAGE on pericytes. The primary mouse brain microvascular pericytes were cultured and supplemented with HMGB1 recombinant protein; the cultured pericytes supplemented with FPS-ZM1 were used as the control to explore the effect of HMGB1-RAGE pathway on vascular pericytes in vitro. 【Results】 The expression levels of early post-traumatic cortical pericyte markers platelet-derived growth factor receptor beta (PDGFR-β) and NG2 proteoglycan (NG2) decreased (PDGFR-β, Control vs. CCI 3D P<0.05; NG2, Control vs. CCI 6H P<0.05; Control vs. CCI 1D P<0.05). We found that pericytes were detached from blood vessels, accompanied by local blood-brain barrier opening. The expression of HMGB1-RAGE-NF-κB signaling pathway was increased in the early cortex after trauma (HMGB1, Control vs. CCI 6H P<0.05, Control vs. CCI 1D P<0.05; RAGE, Control vs. CCI 6H P<0.05, Control vs. CCI 1D P<0.05, Control vs. CCI 3D P<0.05, Control vs. CCI 5D P<0.05, Control vs. CCI 7D P<0.05; NF-κB, Control vs. CCI 6H P<0.05, Control vs. CCI 1D P<0.05). After blocking the binding of RAGE with the ligand, cortical edema was reduced (CCI 6H P<0.05, CCI 1D P<0.05), and neurovascular unit damage was reduced. HMGB1 recombinant protein could increase the migration ability of cultured pericytes (Control vs. HMGB1 P<0.05, Control vs. HMGB1+FPS-ZM1 P<0.05), and could be reversed by FPS-ZM1 (HMGB1 vs. HMGB1+FPS-ZM1 P<0.05). 【Conclusion】 High-level HMGB1 after traumatic brain injury mediates pericytes’ detachment from blood vessels through RAGE on pericytes and leads to the occurrence of local cerebral edema.

9.
Digital Chinese Medicine ; (4): 317-327, 2023.
Article in English | WPRIM | ID: wpr-997735

ABSTRACT

@#Objective To investigate the underlying mechanism of the compound Bugansan Decoction (补肝散, BGSD) in intervening learning and memory in D-galactose (D-gal)-induced aging rats. @*Methods@#A total of 40 rats were randomly assigned to four groups: control, model, BGSD [14.06 g/(kg·d)], and piracetam [0.4 g/(kg·d)] groups, with 10 rats in each group. D-gal [400 mg/(kg·d)] was injected intraperitoneally to establish the aging rat model. The rats' body weight, water intake, food intake, and gripping strength were recorded each week. The eightarm maze and step-down test were used to measure the rats' capacity for learning and memory. Liver, thymus, spleen, and brain tissues were weighed to calculate the corresponding organ indices; serum malondialdehyde (MDA) content and superoxide dismutase (SOD) activity were measured. Hematoxylin and eosin (HE) staining was adopted to observe the pathological changes of the hippocampus; enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β in the hippocampus. Real-time quantitative polymerase chain reaction (RT-qPCR) was used to detect the expression of receptors for advanced glycation end products (RAGE), nuclear factor-κB (NF-κB), TNF-α, IL-6, and IL-1β mRNA in the hippocampus. Western blot (WB) was employed to detect the expression levels of advanced glycation end products (AGEs), RAGE, and NF-κB protein in the hippocampus. @*Results@#In D-gal-induced aging rats, BGSD significantly increased food intake, water intake, body weight, gripping strength, and organ indices (P < 0.05), and significantly decreased working memory error (WME), reference memory error (RME), and total memory errors (TE) in an eight-arm maze (P < 0.05). In the step-down test, step-down latency was prolonged and the frequency of errors dropped (P < 0.05). Additionally, BGSD could lessen the harm done to hippocampus neurons, increase serum SOD activity, lower MDA levels, and down-regulate the expression levels of the pro-inflammatory molecules TNF-α, IL-6, and IL-1β (P < 0.05). Further findings showed that BGSD significantly decreased hippocampal AGEs, RAGE, and NF-κB expression (P < 0.05). @*Conclusion@#By blocking the AGEs/RAGE/NF-κB signaling pathway, BGSD may regulate the neuroinflammatory damage in D-gal-induced aging rats, and thus improve learning and memory.

10.
Int. j. med. surg. sci. (Print) ; 9(2): 1-10, June 2022. ilus
Article in Spanish | LILACS | ID: biblio-1512565

ABSTRACT

The receptor for advanced glycation end products (RAGE) is implicated in the pathogenesis of several chronic diseases including diabetes. The interaction between RAGE and advanced glycation end products (AGEs) promotes gene expression, enhances the release of proinflammatory molecules and causes the generation of oxidative stress in numerous cell types. The aim of this investigation was to evaluate the effect of enalapril and losartan on RAGE expression in abdominal aortic endothelium of rats with experimentally induced diabetes. Male Sprague-Dawley rats, weighing approximately 150 - 200 g, were used. Diabetes was induced in 30 rats by intravenous administration of a single dose of 55 mg/kg body weight of streptozotocin (ETZ). The following groups were studied: control (n=10), diabetic (n=10), losartan-treated diabetic (n=10) and enalapril-treated diabetic (n=10) rats. RAGE expression in aortic endothelium was determined by indirect immunofluorescence. A significant increase in RAGE expression was observed in diabetic animals versus controls (p<0.001), there was a decrease in RAGE expression, in animals treated with losartan versus controls (p<0.01) and in those treated with enalapril (p<0.05) versus control and versus diabetes + vehicle. In conclusion, in the experimental model of ETZ-induced diabetes, there is an increase in RAGE expression at the level of the abdominal aortic endothelium, which can be reversed by treatment with losartan and/or enalapril, two drugs that block the renin-angiotensin system, suggesting its involvement in the molecular events related to vascular damage during diabetes.


El receptor para productos finales de glicación avanzada (RAGE) está implicado en la patogénesis de varias enfermedades crónicas incluyendo la diabetes. La interacción entre RAGE y los productos finales de glicación avanzada (AGEs), promueve la expresión génica, potencia la liberación de moléculas proinflamatorias y provoca la generación de estrés oxidativo en numerosos tipos de células. El objetivo de esta investigación fue evaluar el efecto del enalapril y el losartán sobre la expresión de RAGE en el endotelio de la aorta abdominal de ratas con diabetes inducida experimentalmente. Se utilizaron ratas Sprague-Dawley machos, con un peso aproximado de entre 150 - 200 g. La diabetes se indujo en 30 ratas mediante la administración intravenosa de una sola dosis de 55 mg/Kg de peso corporal de estreptozotocina (ETZ). Se estudiaron los siguientes grupos: ratas control (n=10), diabéticas (n=10), diabéticas tratadas con losartán (n=10) y diabéticas tratadas con enalapril (n=10). La expresión de RAGE en el endotelio aórtico se determinó por inmunofluorescencia indirecta. Se observó un incremento significativo en la expresión de RAGE en los animales diabéticos versus los controles (p<0.001), hubo una disminución en la expresión de RAGE, en los animales tratados con losartán versus los controles (p<0.01) y en los tratados con enalapril (p<0.05) versus control y versus diabetes + vehículo. En conclusión, en el modelo experimental de diabetes inducida por ETZ, existe un incremento en la expresión de RAGE a nivel del endotelio de la aorta abdominal, la cual puede revertirse mediante el tratamiento con losartán y/o enalapril, dos fármacos bloqueadores del sistema renina-angiotensina, lo cual sugiere la participación del mismo en los acontecimientos moleculares relacionados con el daño vascular durante la diabetes.


Subject(s)
Animals , Male , Rats , Enalapril/pharmacology , Losartan/pharmacology , Diabetes Mellitus, Experimental , Receptor for Advanced Glycation End Products/drug effects , Aorta, Abdominal , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Immunohistochemistry , Rats, Sprague-Dawley , Angiotensin II Type 1 Receptor Blockers/pharmacology , Endothelium , Receptor for Advanced Glycation End Products/metabolism
11.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 21-27, 2022.
Article in Chinese | WPRIM | ID: wpr-940792

ABSTRACT

ObjectiveTo explore the effect of Youguiwan on the rats with adriamycin-induced nephrotic syndrome (NS) and its mechanism. MethodSD rats were randomly divided into a normal group, a model group, three Youguiwan low, medium, and high-dose groups, and a prednisone group. Rats in the model group were intravenously injected with adriamycin in the tail vein to induce the NS model. Rats in the Youguiwan low, medium, and high-dose groups were given 2.8, 5.6, 11.2 g·kg-1·d-1 of crude drugs, respectively, and rats in the prednisone group were given 6.3 mg·kg-1·d-1 of prednisone acetate. Each administration group was given continuous medicine for 6 weeks, and the normal group and model group were given an equal volume of normal saline. Bicinchoninic acid (BCA) assay was used to detect 24 h urine protein (24 h UP). Automatic biochemical analyzer was used to detect serum urea nitrogen (BUN), creatinine (SCr), albumin (ALB), total cholesterol (TC), and triglyceride (TG) levels. Hematoxylin-eosin (HE) staining was used to observe renal tissue morphology, and kit was used to detect serum advanced oxidized protein products (AOPPs) and reactive oxygen species (ROS). Western blot was used to detect the receptor of advanced glycation endproducts (RAGE) of renal tissue, nuclear factor-κB (NF-κB) phosphorylation levels, Wnt, and β-catenin protein expression. ResultAs compared with the normal group, 24 h UP, serum BUN, SCr, TC, TG, AOPPs, and ROS levels in the model group increased significantly (P<0.01), whereas ALB decreased (P<0.01). There were typical pathological injuries in the renal tissue, and the expressions of RAGE, phosphorylation(p)-NF-κB, Wnt1, and β-catenin protein were significantly increased (P<0.01). As compared with the model group, the 24 h UP, serum BUN, SCr, TC, TG, AOPPs, and ROS levels of rats in the Youguiwan low, medium, and high-dose groups significantly reduced (P<0.01), and ALB significantly increased (P<0.01). The renal tissue damage was reduced, and the expressions of RAGE, p-NF-κB, Wnt1, and β-catenin protein were significantly decreased (P<0.01) in a dose-dependent manner. ConclusionYouguiwan improves the kidney injury of rats with adriamycin-induced NS. The mechanism may be related to the reduction of AOPPs level, inhibition of RAGE/ROS/NF-κB axis, and activation of Wnt/β-catenin signal.

12.
Chinese Journal of Experimental Traditional Medical Formulae ; (24): 9-18, 2022.
Article in Chinese | WPRIM | ID: wpr-940755

ABSTRACT

ObjectiveTo investigate the protective effect of Liuwei Dihuangwan on neurovascular injury in SAMP8 mice. MethodThe Alzheimer's disease (AD) model with insufficiency of kidney essence was induced in 75 SAMP8 mice aging 6 months. The model mice were divided into model group, positive control group (donepezil hydrochloride, 0.747 mg·kg-1·d-1), and high-, medium-, and low-dose Liuwei Dihuangwan groups (2.700, 1.350, 0.675 g·kg-1·d-1), with 15 mice in each group. Fifteen SAMR1 mice were assigned to a normal control group. All mice were administered continuously for 2 months. The spatial memory of mice was tested by the Morris water maze. Hematoxylin-eosin (HE) staining was used to observe the pathological changes in the hippocampus and cortex of brain tissues. The immunohistochemical method (IHC) was used to detect the deposition of amyloid β-protein (Aβ) and the expression of von Willebrand factor (vWF) and CD34 in the hippocampus and cortex of brain tissues. Electron microscopy was used to observe the ultrastructural changes in cerebral microvessels. Western blot was used to detect the protein expression levels of the receptor of advanced glycation endproduct (RAGE), low-density lipoprotein receptor-related protein 1 (LRP1), vascular endothelial growth factor A (VEGF-A), and P-selection in the hippocampus and cortex of brain tissues. ResultCompared with the normal control group, the model group showed prolonged escape latency and swimming distance (P<0.01), increased number of glial cells, decreased number of nerve cells, blurred tight junctions or enlarged gap of the brain microvascular endothelial cells, severely injured membrane structure, swollen mitochondria of endothelial cells, ruptured membrane, massive dissolution in cristae, increased protein expression of Aβ and vWF in the hippocampus and cortex (P<0.01), reduced protein expression of CD34 (P<0.05), elevated protein expression of RAGE and P-selection in the cortex (P<0.01), and decreased protein expression level of LRP1 and VEGF-A (P<0.01). Compared with the model group, the Liuwei Dihuangwan groups showed shortened escape latency and swimming distance (P<0.05), reduced number of glial cells in the cortex and hippocampus, increased number of microvessels in the cortex, clear double-layer membrane structure in tight junctions between the microvascular endothelial cells, increased number of mitochondria with intact membrane and recovered mitochondrial cristae, decreased protein expression of Aβ, vWF, RAGE, and P-selection in the hippocampus and cortex (P<0.05), and increased protein expression of CD34, LRP1, and VEGF-A (P<0.05). ConclusionLiuwei Dihuangwan can regulate Aβ metabolism through the RAGE/LRP1 receptor system and promote cerebral microvascular angiogenesis by inhibiting vWF expression and increasing VEGF-A and CD34, thereby improving cerebral microvascular injury in SAMP8 mice.

13.
J. bras. nefrol ; 43(4): 460-469, Dec. 2021. graf
Article in English, Portuguese | LILACS | ID: biblio-1350919

ABSTRACT

Abstract Introduction: The receptor for AGEs (RAGE) is a multiligand member of the immunoglobulin superfamily of cell surface receptors expressed in many organs, among them, the kidneys. When activated, RAGE leads to a sequence of signaling that results in inflammation and oxidative stress, both involved in kidney disease pathogenesis. Gamma-oryzanol (γOz) comprises a mixture of ferulic acid (FA) esters and phytosterols (sterols and triterpene alcohols) mainly found in rice, with antioxidant and anti-inflammatory activities. Aim: To evaluate the effect of γOz to reduce renal inflammation and oxidative stress by modulating AGEs/RAGE axis in animals submitted to a high sugar-fat diet. Methods: Male Wistar rats (±187g) were randomly divided into two experimental groups: control (n = 7 animals) and high sugar-fat diet (HSF, n = 14 animals) for 20 weeks. After this period, when the presence of renal disease risk factors was detected in the HSF group (insulin resistance, dyslipidemia, increased systolic blood pressure and obesity), the HSF animals were divided to begin the treatment with γOz or continue receiving only HSF for 10 more weeks. Results: No effect of γOz on obesity and metabolic parameters was observed. However, kidney inflammation and oxidative stress decreased as soon as RAGE levels were reduced in HSF + γOz. Conclusion: It is possible to conclude that the gamma- oryzanol was effective in reducing inflammation and oxidative stress in the kidney by modulating the AGEs/RAGE axis.


Resumo Introdução: O receptor para AGEs (RAGE) é um membro multiligante da superfamília das imunoglobulinas dos receptores de superfície celular expresso em muitos órgãos, entre eles, os rins. Quando ativado, o RAGE leva a uma sequência de sinalização que resulta em inflamação e estresse oxidativo, ambos envolvidos na patogênese de doenças renais. O gama-orizanol (γOz) compreende uma mistura de ésteres de ácido ferúlico (AF) e fitoesteróis (esteróis e álcoois triterpenos) encontrados principalmente no arroz, com atividades antioxidantes e anti-inflamatórias. Objetivo: Avaliar o efeito do γOz para reduzir a inflamação renal e o estresse oxidativo pela modulação do eixo RAGE/AGEs em animais submetidos a uma dieta rica em gordura e açúcar. Métodos: Ratos Wistar machos (±187g) foram divididos aleatoriamente em dois grupos experimentais: controle (n = 7 animais) e dieta rica em gordura e açúcar (HSF, do inglês high sugar-fat diet, n = 14 animais) por 20 semanas. Após este período, quando foi detectada a presença de fatores de risco de doença renal no grupo HSF (resistência à insulina, dislipidemia, aumento da pressão arterial sistólica e obesidade), os animais HSF foram divididos para iniciar o tratamento com γOz ou continuar recebendo apenas HSF por mais 10 semanas. Resultados: Não foi observado nenhum efeito do γOz na obesidade e nos parâmetros metabólicos. No entanto, a inflamação e o estresse oxidativo renais diminuíram assim que os níveis de RAGE foram reduzidos em HSF + γOz. Conclusão: É possível concluir que o gama- orizanol foi eficaz em reduzir a inflamação e o estresse oxidativo no rim pela modulação do eixo RAGE/AGEs.


Subject(s)
Animals , Male , Rats , Sugars , Diet, High-Fat , Phenylpropionates , Rats, Wistar , Oxidative Stress , Inflammation/drug therapy
14.
China Pharmacy ; (12): 2229-2235, 2021.
Article in Chinese | WPRIM | ID: wpr-886804

ABSTRACT

OBJECTIVE:To prelimi narily investigate the possible mechanism of orazamide to prevent anti-tuberculosis drug-induced liver injury (ATB-DILI). METHODS :A total of 60 Kunming mice were randomly divided into blank group ,model group,positive control group [diammonium glycyrrhizinate 60 mg/(kg·d)],orazamide low-dose ,medium-dose and high-dose groups [ 80,160,320 mg/(kg·d)],with 10 mice in each group. Except for blank group ,other groups were given isoniazid [ 75 mg/(kg·d)]+rifampicin [ 75 mg/(kg·d)] for 14 days intragastrically to induce ATB-DILI model. At the same time ,administration groups were given relevant medicine intragastrically ,blank group and model group were given normal saline intragastrically. The administration volume was 20 mL/(kg·d),once a day ,for consecutive 14 days. The general conditions of the mice were observed and recorded every day ,such as growth and development ,mental and diet state. After last medication ,liver index was calculated , and HE staining was adopted to observe pathological changes of liver tissue of mice. The positive expression of high mobility group protein B 1 (HMGB1) and NF-κ B in liver tissue were detected by streptavidin biotin-peroxidase complex (SABC) immuno- histochemistry. The serum levels of liver function indexes in serum ,the protein expression of advanced glycation end product receptor(RAGE)and TNF-α in liver tissue were detected by ELISA. RESULTS:Compared with blank group ,the growth and development of mice in the model group were slow ,and their appetite and spirit were poor. The liver index ,serum levels of TBIL , DBIL,ALT,AST,ALP,TBA and γ-GT were increased significantly (P<0.05). Structural disorder of liver lobules ,degeneration and necrosis of liver cells and inflammatory cell infiltration were observed. The expression of HMGB 1,NF-κB,RAGE and TNF-α in liver tissue were elevated significantly (P<0.05). Compared with model group ,the general condition of mice were all improved to different extents in orazamide low-dose ,medium-dose and high-dose groups ,positive control group ,while liver index and above serum indexes were all decreased significantly (P<0.05). The pathological changes of liver tissue were all improved to different extents ,while the protein expression of HMGB 1,NF-κB,RAGE and TNF-α were all decreased significantly(P<0.05). The improvement of above indexes in orazamide high-dose group were all significantly better than orazamide low-dose and medium-dose groups (P<0.05);the levels of ALP and TBA in orazamide high-dose group were significantly lower than positive control group (P<0.05). CONCLUSIONS :Orazamide can prevent ATB-DILI induced by isoniazid combined with rifampicin in mice,the mechanism of which may be associated with down-regulating the protein expression of HMGB 1 and RAGE in liver tissue and inhibiting the secretion of inflammatory factors.

15.
ASEAN Journal of Psychiatry ; : 1-5, 2021.
Article in English | WPRIM | ID: wpr-922839

ABSTRACT

@#There is strong evidence that paranoia can be an existing trait in the general population as a continuous dimension ranging from minimal levels to paranoid personality traits, and that at its maximum expression could take the form of disabling psychotic disorders such as delusional disorder or schizophrenia however, and according to Caviedes, GEC and Yonfá, EDA. Here are studies in which the existence of comorbidity between paranoid, borderline, antisocial and histrionic personality and problematic alcohol consumption is mentioned which in psychopathological terminology is called dual pathology (comorbidity of mental disorder and toxic consumption).

16.
ASEAN Journal of Psychiatry ; : 1-4, 2021.
Article in English | WPRIM | ID: wpr-934859

ABSTRACT

@#In the 80’s, in Spain, there was a very significant increase in the population addicted to heroin use. The behaviour patterns of use and abuse of this substance also caused many drug addicts to be linked to the associated consumption of multiple toxic substances, favouring the appearance of politoxicomania. The origin of the change of model in drug use began in mid- 1987 and in the following years, ecstasy and the so-called designer drugs began to spread throughout the festival scene in the United Kingdom, Western Europe and the Iberian Peninsul. In the 90’s, new substances were introduced into society that had little to do with heroin use, shifting the link to toxic substances to these better accepted and less questioned substances, avoiding the possible problems associated with consumption in marginal environments. The normalization of the consumption of substances of abuse began to have a greater social tolerance, breaking the stigma that led to the alarm raised by heroin consumption in the 80’s. In this sense, drugs were no longer associated with marginalization, and were seen in environments considered festive and, therefore, “normal”. ASEAN Journal of Psychiatry, Vol. 22(5): July 2021: 1-4.

17.
China Journal of Chinese Materia Medica ; (24): 5693-5700, 2021.
Article in Chinese | WPRIM | ID: wpr-921754

ABSTRACT

To investigate the potential molecular markers and drug-compound-target mechanism of Mahuang Shengma Decoction(MHSM) in the intervention of acute lung injury(ALI) by network pharmacology and experimental verification. Databases such as TCMSP, TCMIO, and STITCH were used to predict the possible targets of MHSM components and OMIM and Gene Cards were employed to obtain ALI targets. The common differentially expressed genes(DEGs) were therefore obtained. The network diagram of DEGs of MHSM intervention in ALI was constructed by Cytoscape 3. 8. 0, followed by Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses of target genes. The ALI model was induced by abdominal injection of lipopolysaccharide(LPS) in mice. Bronchoalveolar lavage fluid(BALF) was collected for the detection of inflammatory factors. Pathological sectioning and RT-PCR experiments were performed to verify the therapeutic efficacy of MHSM on ALI. A total of 494 common targets of MHSM and ALI were obtained. Among the top 20 key active compounds of MHSM, 14 from Ephedrae Herba were found to be reacted with pivotal genes of ALI [such as tumor necrosis factor(TNF), tumor protein 53(TP53), interleukin 6(IL6), Toll-like receptor 4(TLR4), and nuclear factor-κB(NF-κB)/p65(RELA)], causing an uncontrolled inflammatory response with activated cascade amplification. Pathway analysis revealed that the mechanism of MHSM in the treatment of ALI mainly involved AGE-RAGE, cancer pathways, PI3 K-AKT signaling pathway, and NF-κB signaling pathway. The findings demonstrated that MHSM could dwindle the content of s RAGE, IL-6, and TNF-α in the BALF of ALI mice, relieve the infiltration of inflammatory cells in the lungs, inhibit alveolar wall thickening, reduce the acute inflammation-induced pulmonary congestion and hemorrhage, and counteract transcriptional activities of Ager-RAGE and NF-κB p65. MHSM could also synergically act on the target DEGs of ALI and alleviate pulmonary pathological injury and inflammatory response, which might be achieved by inhibiting the expression of the key gene Ager-RAGE in RAGE/NF-κB signaling pathway and downstream signal NF-κB p65.


Subject(s)
Animals , Mice , Acute Lung Injury/genetics , Drugs, Chinese Herbal/pharmacology , Lipopolysaccharides , Lung/metabolism , NF-kappa B/metabolism , Network Pharmacology , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction
18.
Article | IMSEAR | ID: sea-210637

ABSTRACT

The studies have suggested that advanced glycation end products (AGEs) induce stress oxidative and inflammatorypathway, which results in chronic complication. Centella asiatica (CA) has been shown as a promising candidate forAGE inhibitor due to its ability of reducing AGE production. This study aims to explore the molecular docking ofCA active compound as an inhibitor of AGEs and receptor AGEs (RAGEs). The top three docking structures werepicked for molecular dynamic (MD) simulations. Based on MD simulation in this study, we found that CA activecompound had been proven to interact with AGEs and RAGE. AGEs bound to asiaticoside, madasiatic acid, andmadecassic acid with a binding energy of −11.8253, −10.6724, and −10.1462 kcal/mol, respectively. Nonetheless,Asn106, Asp324, Asp376, Tyr420, and Tyr500 of AGEs made a significant contribution to the complex of asiaticosideAGE, as well as those for the madasiatic acid AGE, which were Asn118 and Tyr500. RAGE bound to asiaticoside,asiatic acid, and isothankunik acid with a binding energy of −10.6125, −9.4469, and −9.1015 kcal/mol, respectively.CA active compounds, specifically asiatic acid, madasiatic acid, and madecassic acid, interacted with AGEs, whereasasiaticoside and isothankunik acid interacted with RAGE based on docking and model studies.

19.
J Pharm Biomed Sci ; 2020 Apr; 10(4): 73-80
Article | IMSEAR | ID: sea-215716

ABSTRACT

Background The interaction of the receptor for advanced glycation end product (RAGE) on blood-brain-barrier(BBB) with amyloid β (Aβ) plays an important role in the occurrence and development of AD. RP1 is a RAGEspecific binding peptide, which was discovered in our previous experiments, and it has been proved to beeffective on AD cell model, however, its effects on BBB tight junctions (TJs) and on Aβ transport into the brain isunclear.Methods Immunofluorescence experiment was used to identify whether RP1 bound with RAGE specifically.BEnd3-immortalized mouse brain microvascular endothelial cells were used to construct a BBB model. TEER andFD40 tests were used to confirm the stability of the BBB model, and the colocalization of the RP1 and RAGE onthe surface bEnd3 cells was observed with confocal microscopy.Results We confirmed that RP1 can bind to RAGE specifically in vitro. Functional analyses indicated that RP1 caneffectively alleviate the destroy of TJs of BBB and the decrease of permeability of BBB caused by Aβ. Furthermore,RP1 can competitively inhibit the interaction of Aβ with the RAGE in vitro, and effectively inhibit Aβ transport intothe brain.Conclusion RP1 can inhibit BBB damage induced by Aβ and block RAGE-Aβ interaction effectively, and RP1 canbe a candidate of RAGE inhibitors contributing to AD treatment

20.
Journal of Pharmaceutical Analysis ; (6): 452-465, 2020.
Article in Chinese | WPRIM | ID: wpr-865665

ABSTRACT

The implication of the receptor for advanced glycation end-products (RAGE) in numerous diseases and neurodegenerative disorders makes it interesting both as a therapeutic target and as an inflammatory biomarker. In the context of investigating RAGE as a biomarker, there is interest in developing radio-tracers that will enable quantification of RAGE using positron emission tomography (PET) imaging. We have synthesized potential small molecule radiotracers for both the intracellular ([18F]InRAGER) and extracellular ([18F]RAGER) domains of RAGE. Herein we report preclinical evaluation of both using in vitro (lead panel screens) and in vivo (rodent and nonhuman primate PET imaging) methods. Both radiotracers have high affinity for RAGE and show good brain uptake, but suffer from off-target binding. The source of the off-target PET signal is not attributable to binding to melatonin receptors, but remains unexplained. We have also investigated use of lipopolysaccharide (LPS)-treated mice as a possible animal model with upregulated RAGE for evaluation of new imaging agents. Immunoreactivity of the mouse brain sections revealed increases in RAGE in the male cohorts, but no difference in the female groups. However, it proves challenging to quantify the changes in RAGE due to off-target binding of the radio-tracers. Nevertheless, they are appropriate lead scaffolds for future development of 2nd generation RAGE PET radiotracers because of their high affinity for the receptor and good CNS penetration.

SELECTION OF CITATIONS
SEARCH DETAIL